Invariant subspaces for Banach space operators with an annular spectral set

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators

In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.

متن کامل

Hankel operators and invariant subspaces of the Dirichlet space

The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f ′ is square integrable with respect to two-dimensional Lebesgue measure. In this paper we prove that the invariant subspaces of the Dirichlet shift are in 1-1 correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subs...

متن کامل

Certain Invariant Subspaces for Operators with Rich Eigenvaujes

For a connected open subset of the plane and n a positive integer, let B () be the space introduced by Cowen and Douglas. In this article we study the n spectrum of restrictions of T in order to obtain more information about the invariant subspaces of T. When n=l and T e Bl(fl) such that o(T) is a spectral set for T we use the functional calculus we have developed for such operators to give som...

متن کامل

Invariant subspaces of abstract multiplication operators

INVARIANT SUBSPACES OF ABSTRACT MULTIPLICATION OPERATORS by Hermann Flaschka We describe a class of operators on a Banach space ft whose members behave, in a sense, like multiplication operators, and consequently leave invariant a proper closed subspace of IB. One of the sufficient conditions for an operator to be such an "abstract multiplication" bears a striking resemblence to an assumption m...

متن کامل

Selfadjoint time operators and invariant subspaces

For classical dynamical systems time operators are introduced as selfadjoint operators satisfying the so called weak Weyl relation (WWR) with the unitary groups of time evolution. Dynamical systems with time operators are intrinsically irreversible because they admit Lyapounov operators as functions of the time operator. For quantum systems selfadjoint time operators are defined in the same way...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2007

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-07-04324-3